Refractive index and density of alkali lime borogermanosilicate glasses

G. A. C. M. SPIERINGS, G. P. MELIS Philips Research Laboratories, Eindhoven, The Netherlands

Refractive index and density data of glasses having molar compositions $15\% A_2O-10\%$ CaO-45% SiO₂-(30 - x)% GeO₂--x% B₂O₃ with A = Na or K are reported. From these data the molar refraction and the contribution of oxygen to the molar refraction are calculated. The co-ordination of germanium and boron in these glasses is discussed. At x = 0, GeO₆ octahedra are observed which are gradually transformed into GeO₄ tetrahedra as the GeO₂ is replaced by B₂O₃. In B₂O₃-rich glasses no GeO₆ octahedra are present and the structure of the B₂O₃-rich glasses is found to be the same as that of comparable alkali borosilicate glasses.

1. Introduction

The structure of borate or germanate groups formed on the incorporation of B_2O_3 or GeO_2 in alkali silicate glasses has been found to depend on the total bulk composition [1-4]. In alkali borosilicate glasses the presence of a variety of units containing BO₃ triangles and BO₄ tetrahedra has been postulated [1, 2, 5, 6]. In alkali germanosilicate glasses the occurrence of both GeO₄ tetrahedra and GeO_6 octahedra has been observed [7]. The mutual influence between the co-ordination types of Ge and B in alkali borogermanate glasses has been reported by Riebling, Blaszyk and Smith [8] and Krupkin and Evetrop'ev [9]. In both papers it is concluded that with increasing B_2O_3 content, the GeO₆ octahedra are gradually transformed into GeO₄ tetrahedra. At the ratio $B_2O_3/GeO_2 = 1$, no remaining GeO_6 octahedra are observed [9]. A study of the density and refractive index of alkali lime borogermanosilicate glasses is reported here. Using the molar refractivity data, B and Ge co-ordination is investigated.

The alkali lime borogermanosilicate glasses may be of interest in the production of optical fibres [10]. Alkali lime germanosilicate glasses are used for preparing graded index optical fibres, making use of the refractive index difference between

*Reagent grade, Merck, Darmstadt, W. Germany.

§ Zeiss, Oberkochen, W. Germany.

0022-2461/81/041059-04**\$**02.40/0 © 1981 Chapman and Hall Ltd.

the Na_2O and K_2O glasses. The incorporation of some B_2O_3 significantly lowers the melting and fibre drawing temperature while the refractive index differences between the Na_2O and K_2O glass is maintained.

2. Experimental procedure

The glasses were prepared from Na₂CO₃*, K₂CO₃*, CaCO₃*, B₂O₃*, SiO₂[†] and GeO₂[‡] in batches of 400 g. The glass compositions were 15 mol % A_2O_- 30 mol % CaO-45 mol % SiO₂-(30 - x) mol % GeO₂-x mol % B₂O₃ with A = Na or K. The glasses were prepared by manually mixing the components, followed by melting in Pt-10% Rh crucibles in an electrically heated furnace. The melting temperatures ranged from 1350° C for glasses with x = 0 to 1100° C for x = 30. Dry oxygen was bubbled through the melt for 1 h to achieve homogenization. After bubbling, the temperature was decreased by 100° C for fining and subsequently the melt was poured into graphite moulds and annealed.

The refractive index n_D was measured on an Abbe refractometer[§] with an accuracy of 2×10^{-4} . The density *D* was determined by measuring the weight of the samples, both in air and in water at 25° C (precision 5×10^{-3} g cm⁻³).

[†] α -quartz, Hereaus, Hanau, W. Germany.

[‡]Extra-pure, Hoboken, Belgium.

TABLE I Refractive index (n_D) , density (D), molar refraction (R) and contribution of oxygen to the molar refraction $R(O^{2-})$ for glasses with a molar composition 15% Na₂O-10% CaO-45% SiO₂-(30-x)% GeO₂-x% B₂O₃

		1 AF 7			
Composition x (wt%)	n _D	D (g cm ⁻³)	<i>R</i> (cm ³)	R(O ²⁻) (cm ³)	
0	1.5799	3.059	7.97	3.90	
3.8	1.5760	3.009	7.92	3.84	
7.5	1.5723	2.945	7.90	3.80	
11.3	1.5683	2.898	7.83	3.74	
15.0	1.5632	2.834	7.80	3.70	
18.8	1.5585	2.760	7.80	3.67	
22.5	1.5542	2.694	7.79	3.64	
26.3	1.5488	2.620	7.78	3.61	
30.0	1.5415	2.551	7.75	3.57	

3. Results

Tables I and II give the refractive indices n_D and densities D of the glasses as function of x. From these data the molar refraction R of the glasses can be calculated using the Lorentz-Lorenz equation

$$R = \frac{(n_{\rm D}^2 - 1)\bar{M}}{(n_{\rm D}^2 + 2)D},$$
 (1)

where \overline{M} is the average molar weight, $\overline{M} = 0.15$ $M(A_2O) + 0.10 M(CaO) + 0.45 M(SiO_2) + (0.30 - 0.01x) M(GeO_2) + 0.01x M(B_2O_3)$, where M is the molecular weight. The molar refraction R, also given in Tables I and II is usually thought of as being additively composed of the contributions of each ion in the glass [7, 11, 12]. Therefore, for the glasses discussed here R can be calculated according to

$$R = 0.3 R(A^{+}) + 0.1 R(Ca^{2+}) + 0.45 R(Si^{4+}) + (0.30 - 0.01x) R(Ge^{4+}) + 0.02x R(B^{3+}) + (1.75 + 0.01x) R(O^{2-}).$$
(2)

TABLE II Refractive index (n_D) , density (D), molar refraction (R) and contribution of oxygen to the molar refraction $R(O^{2-})$ for glasses with a molar composition 15% $K_2O-10\%$ CaO-45% $SiO_2-(30-x)\%$ GeO₂-x% B₂O₃

Composition x (wt %)	n _D	D (g cm ⁻³)	<i>R</i> (cm ³)	$R(O^{2-})$ (cm ³)
0	1.5616	2.931	8.64	3.91
3.8	1.5598	2.891	8.59	3.85
7.5	1.5579	2.854	8.53	3.79
11.3	1.5545	2.804	8.49	3.74
15.0	1.5503	2.747	8.47	3.70
18.8	1.5463	2.685	8.45	3.67
22.5	1.5411	2.619	8.44	3.65
25.0	1.5394	2.580	8.43	3.60
30.0	1.5311	2.491	8.41	3.57

Figure 1 $R(O^{2-})$ for glasses with molar compositions 25% Na₂O-(75 - x)% SiO₂-x% B₂O₃ (\circ) and 15% Na₂O-10% CaO-45% SiO₂-(30 - x)% GeO₂-x% B₂O₃ (\times).

All ion refractions except $R(O^{2^{-}})$ are generally considered to be independent of the glass composition and can be obtained from Verwey *et al.* [7] and Scholze [12]. $R(Na^{+}) = 0.72 \text{ cm}^3$; $R(K^{+}) =$ 2.90 cm³; $R(Si^{4+}) = 0.04 \text{ cm}^3$; $R(Ge^{4+}) = 2.60 \text{ cm}^3$ [7]; $R(Ca^{2+}) = 1.33 \text{ cm}^3$ and $R(B^{3+}) = 0.1 \text{ cm}^3$ [12]. Insertion of the known ion refractions into Equation 2 gives $R(O^{2^{-}})$, which is given in Tables I and II.

For comparison, $R(O^{2-})$ for 25 mol % Na₂O-(75 - x) mol % SiO₂-x mol % B₂O₃ glasses was calculated from the refractive index and density data given by Akimov [13]. The values of $R(O^{2-})$ obtained are also shown in Fig. 1. In these glasses SiO₂ instead of GeO₂ is replaced by B₂O₃. Because 15 mol % Na₂O-10 mol % CaO-borogermanosilicate glasses are compared with 25 mol % Na₂O-borosilicate glasses, the influence of the replacement of some Na₂O by CaO on $R(O^{2-})$ was determined in glasses with composition $(25 - x) \mod \% Na_2O$ $x \mod \% CaO-45 \mod \% SiO_2-30 \mod \% B_2O_3$. Table III gives n_D , D, R and $R(O^{2-})$ for these glasses.

4. Discussion

The oxygen refraction $R(O^{2-})$ is strongly depen-

TABLE III Refractive index (n_D) , density (D), molar refraction (R) and contribution of oxygen to the molar refraction $R(O^{2-})$ for glasses with a molar composition $(25 - x)\% A_2O-x\%$ CaO-45% SiO₂-30% B₂O₃

Composition x (wt %)	n _D	D (g cm ⁻³)	<i>R</i> (cm ³)	R(O ²⁻) (cm ³)
$\overline{A = K}$				
0	1.5228	2.476	8.82	3.55
10	1.5321	2.495	8.51	3.57
15	1.5418	2.520	8.21	3.58
A = Na				
0	1.5271	2.526	7.72	3.55
5	1.5353	2.543	7.74	3.56
10	1.5424	2.546	7.78	3.58
15	1.5506	2.560	7.78	3.59

dent on the way the oxygen ions are present in the glass. This has been shown, for instance, by Verwey, Buster and Remmers [7] for alkali germanosilicate glasses. The molar refraction R for these glasses could be explained by assigning $R(O^{2-}) = 3.70 \text{ cm}^3$ to the bridging oxygens (BO) and $R(O^{2-}) = 4.55$ or 4.43 cm^3 to non-bridging oxygens (NBO) in Na₂O and K₂O glasses, respectively. On calculating $R(0^{2})$ for glasses containing B_2O_3 it was found that both for BO's and NBO's the value of $R(O^{2^{-}})$ was glass composition dependent. Consequently the experimental $R(O^{2-})$ values for alkali lime borogermanosilicate glasses can only be discussed qualitatively, comparing them with $R(O^{2^{-}})$ values obtained for comparable alkali borosilicate glasses. Such a comparison is possible because the substitution of CaO for Na₂O or K_2O does not alter $R(O^2)$ significantly, as shown in Table III. In the GeO₂-rich glasses a lower value of $R(O^{2-})$ in the borogermanosilicate glass is observed. For x = 0, alkali silicate and germanosilicate glasses are considered for which $R(O^{2^{-}})$ can be calculated if the numbers of BO's and NBO's are known using the $R(O^{2})$ values given above [7]. 1 mole of a glass with molar composition 25% Na₂O-75% SiO₂ contains 1.25 mole BO and 0.50 mole NBO, resulting in a $R(O^{2-})$ value of 3.95 cm³. For alkali lime germanosilicate glass the structure is more complicated because both 4 and 6 co-ordinated germanium ions are present, of which the latter are surrounded by BO's only. Because SiO_2 is found to dilute the germanate network, leaving the ratio between 4 and 6 coordinated Ge unchanged [7], the number of BO's and NBO's can be obtained from the results of Verwey and Buster [14]: 1 mole of a glass with molar composition 15% Na₂O-10% CaO-30%

GeO₂-45% SiO₂ contains 1.34 mole BO and 0.41 mole NBO, yielding $R(O^{2-}) = 3.90 \text{ cm}^3$. Both theoretical values of $R(O^{2-})$ agree very well with the experimental ones in Fig. 1. Therefore, it is reasonable to assume that the lower $R(O^{2-})$ value in the borogermanosilicate glass is caused by the presence of 6 co-ordinated germanium. As xincreases, $R(O^{2^{-}})$ values for the two glasses both decrease and the difference in $R(O^{2^{-}})$ becomes smaller. It appears that for x larger than about 10%, the difference in $R(O^{2-})$ values becomes very small, within experimental accuracy, indicating that no more 6 co-ordinated germanium is present in the B_2O_3 -rich glass. The same finding has also been reported for alkali borogermanate glasses which indicates that SiO₂ only dilutes the borogermanate network. This has also been observed upon the introduction of SiO₂ into the separate borate and germanate glasses [6, 7].

It is not clear in what manner B_2O_3 is present at small B_2O_3 contents. According to Yun and Bray [5], who conducted an investigation using nuclear magnetic resonance (NMR) techniques B_2O_3 is taken up in BSi_4O_{10} units, as observed in Reedmergnite. In these units boron is co-ordinated by four BO's. Konijnendijk [6], using laser Raman spectroscopy, observed only 3 co-ordinated boron with one NBO (metaborate groups). The relatively large decrease in $R(O^{2-})$ values as x increases (Fig. 1) indicates that BO's are formed at the expense of BNO's supporting the interpretation of Yun and Bray [5].

No difference in $R(O^{2^-})$ for both glasses is observed in the B₂O₃-rich region. It appears that the structure of both glasses is equivalent and germanium is present in 4 co-ordination only. The structure of these types of alkali borosilicate glasses has been extensively studied by e.g. Bray and co-workers [1, 5] and Konijnendijk [6]. No detailed additional information about the structure of these glasses can be obtained from the $R(O^{2^-})$ value, due to glass content dependency of $R(O^{2^-})$ for oxygens bound to boron.

5. Conclusions

In GeO₂-rich alkali lime germanosilicate glasses part of the germanium is in sites that are 6 coordinated by oxygen ions. As B_2O_3 is substituted for GeO₂, the GeO₆ octahedra are gradually transformed into 4 co-ordinated germanium. In the B_2O_3 -rich glasses the structure of the alkali lime borogermanosilicate glasses is comparable with that of alkali borosilicate glasses.

References

- 1. P. J. BRAY and J. G. O'KEEFE, *Phys. Chem. Glasses* 4 (1963) 37.
- 2. M. E. MILBERG, J. G. O'KEEFE, R. A. VERHELST and H. O. HOPPER, *ibid.* 13 (1972) 79.
- 3. K. S. EVSTROP'EV and A. O. IVANOV, "Advances in Glass Technology", Vol. 2 (Plenum Press, New York, 1963) pp. 79–85.
- 4. M. KRISHNA MURTHY and J. IP, *Nature* 201 (1964) 283.
- 5. Y. H. YUN and P. J. BRAY, J. Non-Cryst. Sol. 27 (1978) 363.
- 6. W. L. KONIJNENDIJK, Ph.D. thesis, Philips Research Report, Supplement No. 1 (1975).
- 7. H. VERWEY, J. H. J. M. BUSTER and G. F. REMMERS, J. Mater. Sci. 14 (1979) 931.

- E. F. RIEBLING, P. E. BLASZYK and D. W. SMITH, J. Amer. Ceram. Soc. 50 (1967) 641.
- Yu. S. KRUPKIN and K. S. EVSTROP'EV, Neorg. Mater. 7 (1971) 1591.
- 10. G. A. C M. SPIERINGS, C. M. G. JOCHEM, T. P. M. MEEUWSEN, F. MEYER and P. J. W. SEVERIN, *Phys. Chem. Glasses* **21** (1980) 31.
- 11. K. J. FAJANS and N. J. KREIDL, J. Amer. Ceram. Soc. 31 (1948) 105.
- 12. H. SCHOLZE, "Glas" (Vieweg Verlag, Braunschweig, 1965) p. 130.
- 13. V. V. AKIMOV, Zh. Prikl. Khim. 33 (1960) 2404.
- 14. H. VERWEY and J. H. J. M. BUSTER, J. Non. Cryst. Sol. 34 (1979) 81.

Received 21 August and accepted 10 October 1980.